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Review of tradeoffs

Recap of tradeoffs:

e We want to make both J;(x) and J(x) small subject to
constraints.

e Choose a parameter A > 0, solve
minimize  Ji(x) + AJ(x)

subject to: constraints

e Each )\ > 0 yields a solution X,.

e Can visualize tradeoff by plotting /(%)) vs Ji(X). This is
called the Pareto curve.



Multi-objective tradeoff

Similar procedure if we have more than two costs we'd like
to make small, e.g. S, b, J3

Choose parameters A > 0 and g > 0. Then solve:

minimize  Ji(x) 4+ AJa(x) + ptz(x)

subject to: constraints

Each A > 0 and p > 0 yields a solution Xy ,,.

Can visualize tradeoff by plotting J5(Xy ) vs Jo(Xy ) vs
J1(X,,.) on a 3D plot. You then obtain a Pareto surface.



Minimum-norm as a regularization

e When Ax = b is underdetermined (A is wide), we can
resolve ambiguity by adding a cost function, e.g.
min-norm LS:

minimize Hx||2
X

subject to: Ax=0b

e Alternative approach: express it as a tradeoff!
minimize ||Ax — b||* + \|| x|
X
Tradeoffs of this type are called regularization and A is
called the regularization parameter or regularization weight
o If we let A — oo, we just obtain X =0

e If we let A — 0, we obtain the minimum-norm solution!
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Proof of minimum-norm equivalence

minimize [|Ax — b||* 4+ A||x||?
X

Equivalent to the least squares problem:

2

g [[ A4

Solution is found via pseudoinverse (for tall matrix)

= (AT 1A]) TATE

= (ATA+A)TATD



Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

%= (ATA+ \)1ATh

e Can’t simply set A — 0 because A is wide, and therefore
AT A will not be invertible.

e Use the fact that: ATAAT 4+ M\AT can be factored two ways:
(ATA+ ANAT = ATAAT + AAT = AT(AAT + \I)
(ATA+M)AT = AT(AAT + M)
AT(AAT £ AI)"Y = (ATA + AI)1AT



Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

(ATA+XN)TATH

X
Also equal to:

%= AT(AAT + AI)7tb

e Since AAT is invertible, we can take the limit A\ — 0 by just
setting A = 0.

e In the limit: £ = AT(AAT)"1b. This is the exact solution to
the minimum-norm least squares problem we found before!



Tradeoff visualization

minimize  ||Ax — b||> + \||x||?

A—0
(0, Ab]12)
x> |
\‘ss )\ — 0
(I16]12,0)
| Ax — b||?




Regularization

Regularization: Additional penalty term added to the cost
function to encourage a solution with desirable properties.

Regularized least squares:

minimize [|Ax — b|* + AR(x)

e R(x) is the regularizer (penalty function)
e )\ is the regularization parameter

e The model has different names depending on R(x).



Regularization

minimize ||Ax — b||? + AR(x)

1. FR(x)=|x|P=x2+ x5+ -+ x2
It is called: L, regularization, Tikhonov regularization, or
Ridge regression depending on the application. It has the
effect of smoothing the solution.

2. If R(x) = ||x]l1 = |x| + |x2| + - + | xa]
It is called: Ly regularization or LASSO. It has the effect of
sparsifying the solution (X will have few nonzero entries).

3. R(X) = HXHOO = max{|x1|, ’X2|7 ceey ’Xn’}
It is called L., regularization and it has the effect of
equalizing the solution (makes most components equal).

10-10



Norm balls

For a norm ||-||5, the norm ball of radius r is the set:

Br:{XGRn|||X||p§r}

> 1. 46
K: \ 4 05
-15 -10 -0.5 05 10 15 -1.5 -1.0..-0.5 05 /1.0 15 -15 -1.0 -05 05 10 15

-0.5 -0.5 -0.5
=1 -1. 4

1.5 1.5 -15
[x]2 <1 Ix[p <1 X[l <1
x> +y* <1 x| +ly| <1 max{|x|, [y|} <1
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Simple example
Consider the minimum-norm problem for different norms:

minimize ||x||,
X

subject to: Ax=0b

e set of solutions to Ax = b
is an affine subspace

e solution is point belonging
to smallest norm ball

e for p = 2, this occurs at
the perpendicular distance
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Simple example

e for p = 1, this occurs at
one of the axes.

e sparsifying behavior

25,
e for p = oo, this occurs at \2-0\
equal values of :2 X
coordinates | 05t |
e equalizing behavior A st 1l 2 3 4
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Another simple example

Suppose we have data points {y;, ...
like to find the best estimator for the data, according to

different norms. Suppose data is sorted: y; < --- < y,,.

,¥m} C R, and we would

Y1 X
minimize 5
Ym X P
= L(y1+---+ym). Thisis the mean of the data.
1- This is the median of the data.

2(y1 + ym). This is the mid-range of the data.

Julia demo: Data Norm.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Data Norm.ipynb

Example: hovercraft revisited

One-dimensional version of the hovercraft problem:

e Start at x; = 0 with v; = 0 (at rest at position zero)
Finish at x50 = 100 with vso = O (at rest at position 100)
Same simple dynamics as before:

Xpr1 = X¢ + V.
T o t=1,2,...,49
Viyr = Ve + Ut

Decide thruster inputs uy, Uy, . . ., Usg.

This time: minimize | u||,
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Example: hovercraft revisited

e This model has 150 variables, but very easy to understand.

e We can simplify the model considerably...
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Model simplification

V5o = Vag + Uag

= V4g + Usg + Uag

=i+ (v + Ua + -+ o)
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Model simplification

Xp11 = Xt + Vi
T o t=1,2,...,49
Veyr = Ve + Ut

X50 = Xa9 + Va9
= Xag + 2V4g + Usg

= X7 + 3V47 + 2U47 + Ugg

=Xx1 + 49V1 + (48U1 + 47U2 + -+ 2U47 + Ll48)
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Model simplification

Xer1 = X¢ + V,
o e for: t=1,2,...,49
Vit = Vi + Ug

Constraint can be rewritten as:

5
43 47 ... 2 1 0 uz . X50—X1—49V1
1 1 ... 111 : - Vo — V1

Usg

so we don't need the intermediate variables x; and v;!
Julia demo: Hover 1D.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Hover 1D.ipynb

Results

1. Minimizing ||u||3 (smooth)
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Tradeoff studies

1. Minimizing |ul|3 + Allu||1 (smooth and sparse)
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