10. Regularization

- More on tradeoffs
- Regularization
- Effect of using different norms
- Example: hovercraft revisited

Review of tradeoffs

Recap of tradeoffs:

- We want to make both $J_{1}(x)$ and $J_{2}(x)$ small subject to constraints.
- Choose a parameter $\lambda>0$, solve

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & J_{1}(x)+\lambda J_{2}(x) \\
\text { subject to: } & \text { constraints }
\end{aligned}
$$

- Each $\lambda>0$ yields a solution \hat{x}_{λ}.
- Can visualize tradeoff by plotting $J_{2}\left(\hat{x}_{\lambda}\right)$ vs $J_{1}\left(\hat{x}_{\lambda}\right)$. This is called the Pareto curve.

Multi-objective tradeoff

- Similar procedure if we have more than two costs we'd like to make small, e.g. J_{1}, J_{2}, J_{3}
- Choose parameters $\lambda>0$ and $\mu>0$. Then solve:

$$
\underset{x}{\operatorname{minimize}} J_{1}(x)+\lambda J_{2}(x)+\mu J_{3}(x)
$$

subject to: constraints

- Each $\lambda>0$ and $\mu>0$ yields a solution $\hat{x}_{\lambda, \mu}$.
- Can visualize tradeoff by plotting $J_{3}\left(\hat{x}_{\lambda, \mu}\right)$ vs $J_{2}\left(\hat{x}_{\lambda, \mu}\right)$ vs $J_{1}\left(\hat{x}_{\lambda, \mu}\right)$ on a 3D plot. You then obtain a Pareto surface.

Minimum-norm as a regularization

- When $A x=b$ is underdetermined (A is wide), we can resolve ambiguity by adding a cost function, e.g. min-norm LS:

$$
\begin{aligned}
\underset{x}{\operatorname{minimize}} & \|x\|^{2} \\
\text { subject to: } & A x=b
\end{aligned}
$$

- Alternative approach: express it as a tradeoff!

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda\|x\|^{2}
$$

Tradeoffs of this type are called regularization and λ is called the regularization parameter or regularization weight

- If we let $\lambda \rightarrow \infty$, we just obtain $\hat{x}=0$
- If we let $\lambda \rightarrow 0$, we obtain the minimum-norm solution!

Proof of minimum-norm equivalence

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda\|x\|^{2}
$$

Equivalent to the least squares problem:

$$
\underset{x}{\operatorname{minimize}}\left\|\left[\begin{array}{c}
A \\
\sqrt{\lambda} /
\end{array}\right] x-\left[\begin{array}{l}
b \\
0
\end{array}\right]\right\|^{2}
$$

Solution is found via pseudoinverse (for tall matrix)

$$
\begin{aligned}
\hat{x} & =\left(\left[\begin{array}{c}
A \\
\sqrt{\lambda} I
\end{array}\right]^{\top}\left[\begin{array}{c}
A \\
\sqrt{\lambda} I
\end{array}\right]\right)^{-1}\left[\begin{array}{c}
A \\
\sqrt{\lambda} I
\end{array}\right]^{\top}\left[\begin{array}{l}
b \\
0
\end{array}\right] \\
& =\left(A^{\top} A+\lambda I\right)^{-1} A^{\top} b
\end{aligned}
$$

Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

$$
\hat{x}=\left(A^{\top} A+\lambda /\right)^{-1} A^{\top} b
$$

- Can't simply set $\lambda \rightarrow 0$ because A is wide, and therefore $A^{\top} A$ will not be invertible.
- Use the fact that: $A^{\top} A A^{\top}+\lambda A^{\top}$ can be factored two ways:

$$
\begin{gathered}
\left(A^{\top} A+\lambda I\right) A^{\top}=A^{\top} A A^{\top}+\lambda A^{\top}=A^{\top}\left(A A^{\top}+\lambda I\right) \\
\left(A^{\top} A+\lambda I\right) A^{\top}=A^{\top}\left(A A^{\top}+\lambda I\right) \\
A^{\top}\left(A A^{\top}+\lambda I\right)^{-1}=\left(A^{\top} A+\lambda I\right)^{-1} A^{\top}
\end{gathered}
$$

Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

$$
\hat{x}=\left(A^{\top} A+\lambda /\right)^{-1} A^{\top} b
$$

Also equal to:

$$
\hat{x}=A^{\top}\left(A A^{\top}+\lambda I\right)^{-1} b
$$

- Since $A A^{\top}$ is invertible, we can take the limit $\lambda \rightarrow 0$ by just setting $\lambda=0$.
- In the limit: $\hat{x}=A^{\top}\left(A A^{\top}\right)^{-1} b$. This is the exact solution to the minimum-norm least squares problem we found before!

Tradeoff visualization

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda\|x\|^{2}
$$

Regularization

Regularization: Additional penalty term added to the cost function to encourage a solution with desirable properties.

Regularized least squares:

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda R(x)
$$

- $R(x)$ is the regularizer (penalty function)
- λ is the regularization parameter
- The model has different names depending on $R(x)$.

Regularization

$$
\underset{x}{\operatorname{minimize}}\|A x-b\|^{2}+\lambda R(x)
$$

1. If $R(x)=\|x\|^{2}=x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}$

It is called: L_{2} regularization, Tikhonov regularization, or Ridge regression depending on the application. It has the effect of smoothing the solution.
2. If $R(x)=\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\cdots+\left|x_{n}\right|$

It is called: L_{1} regularization or $L A S S O$. It has the effect of sparsifying the solution (\hat{x} will have few nonzero entries).
3. $R(x)=\|x\|_{\infty}=\max \left\{\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right\}$

It is called L_{∞} regularization and it has the effect of equalizing the solution (makes most components equal).

Norm balls

For a norm $\|\cdot\|_{p}$, the norm ball of radius r is the set:

$$
B_{r}=\left\{x \in \mathbb{R}^{n} \mid\|x\|_{p} \leq r\right\}
$$

$\|x\|_{2} \leq 1$
$x^{2}+y^{2} \leq 1$

$\|x\|_{1} \leq 1$
$|x|+|y| \leq 1$

$\|x\|_{\infty} \leq 1$
$\max \{|x|,|y|\} \leq 1$

Simple example

Consider the minimum-norm problem for different norms:

- set of solutions to $A x=b$ is an affine subspace
- solution is point belonging to smallest norm ball
- for $p=2$, this occurs at
 the perpendicular distance

Simple example

- for $p=1$, this occurs at one of the axes.
- sparsifying behavior

- for $p=\infty$, this occurs at equal values of coordinates
- equalizing behavior

Another simple example

Suppose we have data points $\left\{y_{1}, \ldots, y_{m}\right\} \subset \mathbb{R}$, and we would like to find the best estimator for the data, according to different norms. Suppose data is sorted: $y_{1} \leq \cdots \leq y_{m}$.

- $p=2: \hat{x}=\frac{1}{m}\left(y_{1}+\cdots+y_{m}\right)$. This is the mean of the data.
- $p=1: \hat{x}=y_{[m / 2]}$. This is the median of the data.
- $p=\infty: \hat{x}=\frac{1}{2}\left(y_{1}+y_{m}\right)$. This is the mid-range of the data.

Julia demo: Data Norm.ipynb

Example: hovercraft revisited

One-dimensional version of the hovercraft problem:

- Start at $x_{1}=0$ with $v_{1}=0$ (at rest at position zero)
- Finish at $x_{50}=100$ with $v_{50}=0$ (at rest at position 100)
- Same simple dynamics as before:

$$
\begin{aligned}
x_{t+1} & =x_{t}+v_{t} \\
v_{t+1} & =v_{t}+u_{t}
\end{aligned} \quad \text { for: } t=1,2, \ldots, 49
$$

- Decide thruster inputs $u_{1}, u_{2}, \ldots, u_{49}$.
- This time: minimize $\|u\|_{p}$

Example: hovercraft revisited

$$
\begin{array}{rll}
\underset{x_{t}, v_{t}, u_{t}}{\operatorname{minimize}} & \|u\|_{p} & \\
\text { subject to: } & x_{t+1}=x_{t}+v_{t} & \text { for } t=1, \ldots, 49 \\
& v_{t+1}=v_{t}+u_{t} & \text { for } t=1, \ldots, 49 \\
& x_{1}=0, \quad x_{50}=100 & \\
& v_{1}=0, \quad v_{50}=0 &
\end{array}
$$

- This model has 150 variables, but very easy to understand.
- We can simplify the model considerably...

Model simplification

$$
x_{t+1}=x_{t}+v_{t} \quad \text { for: } t=1,2, \ldots, 49
$$

$$
\begin{aligned}
v_{50} & =v_{49}+u_{49} \\
& =v_{48}+u_{48}+u_{49} \\
& =\cdots \\
& =v_{1}+\left(u_{1}+u_{2}+\cdots+u_{49}\right)
\end{aligned}
$$

Model simplification

$$
x_{t+1}=x_{t}+v_{t} \quad \text { for: } t=1,2, \ldots, 49
$$

$$
\begin{aligned}
x_{50} & =x_{49}+v_{49} \\
& =x_{48}+2 v_{48}+u_{48} \\
& =x_{47}+3 v_{47}+2 u_{47}+u_{48} \\
& =\cdots \\
& =x_{1}+49 v_{1}+\left(48 u_{1}+47 u_{2}+\cdots+2 u_{47}+u_{48}\right)
\end{aligned}
$$

Model simplification

$$
\begin{aligned}
& x_{t+1}=x_{t}+v_{t} \\
& v_{t+1}=v_{t}+u_{t}
\end{aligned} \quad \text { for: } t=1,2, \ldots, 49
$$

Constraint can be rewritten as:

$$
\left[\begin{array}{cccccc}
48 & 47 & \ldots & 2 & 1 & 0 \\
1 & 1 & \ldots & 1 & 1 & 1
\end{array}\right]\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{49}
\end{array}\right]=\left[\begin{array}{c}
x_{50}-x_{1}-49 v_{1} \\
v_{50}-v_{1}
\end{array}\right]
$$

so we don't need the intermediate variables x_{t} and v_{t} !

> Julia demo: Hover 1D.ipynb

Results

1. Minimizing $\|u\|_{2}^{2}$ (smooth)

2. Minimizing $\|u\|_{1}$ (sparse)

3. Minimizing $\|u\|_{\infty}$ (equalized)

Tradeoff studies

1. Minimizing $\|u\|_{2}^{2}+\lambda\|u\|_{1}$ (smooth and sparse)

2. Minimizing $\|u\|_{\infty}+\lambda\|u\|_{1}$ (equalized and sparse)

3. Minimizing $\|u\|_{2}^{2}+\lambda\|u\|_{\infty}$ (equalized and smooth)

