10. Regularization

- More on tradeoffs
- Regularization
- Effect of using different norms
- Example: hovercraft revisited

Review of tradeoffs

Recap of tradeoffs:

- We want to make both $J_1(x)$ and $J_2(x)$ small subject to constraints.
- Choose a parameter $\lambda > 0$, solve

minimize
$$J_1(x) + \lambda J_2(x)$$
 subject to: constraints

- Each $\lambda > 0$ yields a solution \hat{x}_{λ} .
- Can visualize tradeoff by plotting $J_2(\hat{x}_{\lambda})$ vs $J_1(\hat{x}_{\lambda})$. This is called the Pareto curve.

Multi-objective tradeoff

- Similar procedure if we have more than two costs we'd like to make small, e.g. J_1 , J_2 , J_3
- Choose parameters $\lambda > 0$ and $\mu > 0$. Then solve:

minimize
$$J_1(x) + \lambda J_2(x) + \mu J_3(x)$$
 subject to: constraints

- Each $\lambda > 0$ and $\mu > 0$ yields a solution $\hat{x}_{\lambda,\mu}$.
- Can visualize tradeoff by plotting $J_3(\hat{x}_{\lambda,\mu})$ vs $J_2(\hat{x}_{\lambda,\mu})$ vs $J_1(\hat{x}_{\lambda,\mu})$ on a 3D plot. You then obtain a Pareto surface.

Minimum-norm as a regularization

 When Ax = b is underdetermined (A is wide), we can resolve ambiguity by adding a cost function, e.g. min-norm LS:

minimize
$$||x||^2$$

subject to: $Ax = b$

Alternative approach: express it as a tradeoff!

$$\underset{x}{\text{minimize}} \quad \|Ax - b\|^2 + \lambda \|x\|^2$$

Tradeoffs of this type are called **regularization** and λ is called the *regularization parameter* or *regularization weight*

- If we let $\lambda \to \infty$, we just obtain $\hat{x} = 0$
- If we let $\lambda \to 0$, we obtain the minimum-norm solution!

Proof of minimum-norm equivalence

$$\min_{x} ||Ax - b||^2 + \lambda ||x||^2$$

Equivalent to the least squares problem:

$$\underset{x}{\text{minimize}} \quad \left\| \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} x - \begin{bmatrix} b \\ 0 \end{bmatrix} \right\|^2$$

Solution is found via pseudoinverse (for tall matrix)

$$\hat{x} = \left(\begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix} \right)^{-1} \begin{bmatrix} A \\ \sqrt{\lambda}I \end{bmatrix}^{\mathsf{T}} \begin{bmatrix} b \\ 0 \end{bmatrix}$$
$$= (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}b$$

Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

$$\hat{x} = (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}b$$

- Can't simply set $\lambda \to 0$ because A is **wide**, and therefore A^TA will not be invertible.
- Use the fact that: $A^{T}AA^{T} + \lambda A^{T}$ can be factored two ways:

$$(A^{\mathsf{T}}A + \lambda I)A^{\mathsf{T}} = A^{\mathsf{T}}AA^{\mathsf{T}} + \lambda A^{\mathsf{T}} = A^{\mathsf{T}}(AA^{\mathsf{T}} + \lambda I)$$
$$(A^{\mathsf{T}}A + \lambda I)A^{\mathsf{T}} = A^{\mathsf{T}}(AA^{\mathsf{T}} + \lambda I)$$
$$A^{\mathsf{T}}(AA^{\mathsf{T}} + \lambda I)^{-1} = (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}$$

Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

$$\hat{x} = (A^{\mathsf{T}}A + \lambda I)^{-1}A^{\mathsf{T}}b$$

Also equal to:

$$\hat{x} = A^{\mathsf{T}} (AA^{\mathsf{T}} + \lambda I)^{-1} b$$

- Since AA^{T} is invertible, we can take the limit $\lambda \to 0$ by just setting $\lambda = 0$.
- In the limit: $\hat{x} = A^{T}(AA^{T})^{-1}b$. This is the exact solution to the minimum-norm least squares problem we found before!

Tradeoff visualization

Regularization

Regularization: Additional penalty term added to the cost function to encourage a solution with desirable properties.

Regularized least squares:

$$\min_{x} ||Ax - b||^2 + \lambda R(x)$$

- R(x) is the regularizer (penalty function)
- ullet λ is the regularization parameter
- The model has different names depending on R(x).

Regularization

$$\min_{x} ||Ax - b||^2 + \lambda R(x)$$

- **1.** If $R(x) = ||x||^2 = x_1^2 + x_2^2 + \cdots + x_n^2$ It is called: L_2 regularization, Tikhonov regularization, or Ridge regression depending on the application. It has the effect of **smoothing** the solution.
- **2.** If $R(x) = ||x||_1 = |x_1| + |x_2| + \cdots + |x_n|$ It is called: L_1 regularization or LASSO. It has the effect of sparsifying the solution (\hat{x} will have few nonzero entries).
- **3.** $R(x) = ||x||_{\infty} = \max\{|x_1|, |x_2|, \dots, |x_n|\}$ It is called L_{∞} regularization and it has the effect of equalizing the solution (makes most components equal).

Norm balls

For a norm $\|\cdot\|_p$, the **norm ball** of radius r is the set:

$$B_r = \{x \in \mathbb{R}^n \mid ||x||_p \le r\}$$

$$||x||_1 \le 1$$
$$|x| + |y| \le 1$$

$$||x||_{\infty} \le 1$$
$$\max\{|x|,|y|\} \le 1$$

Simple example

Consider the minimum-norm problem for different norms:

minimize
$$||x||_p$$

subject to: $Ax = b$

- set of solutions to Ax = b
 is an affine subspace
- solution is point belonging to smallest norm ball
- for p = 2, this occurs at the perpendicular distance

Simple example

- for p = 1, this occurs at one of the axes.
- sparsifying behavior

equalizing behavior

Another simple example

Suppose we have data points $\{y_1, \ldots, y_m\} \subset \mathbb{R}$, and we would like to find the best estimator for the data, according to different norms. Suppose data is sorted: $y_1 \leq \cdots \leq y_m$.

- p=2: $\hat{x}=\frac{1}{m}(y_1+\cdots+y_m)$. This is the mean of the data.
- p = 1: $\hat{x} = y_{\lceil m/2 \rceil}$. This is the **median** of the data.
- $p = \infty$: $\hat{x} = \frac{1}{2}(y_1 + y_m)$. This is the mid-range of the data.

Julia demo: Data Norm.ipynb

Example: hovercraft revisited

One-dimensional version of the hovercraft problem:

- Start at $x_1 = 0$ with $v_1 = 0$ (at rest at position zero)
- Finish at $x_{50} = 100$ with $v_{50} = 0$ (at rest at position 100)
- Same simple dynamics as before:

$$x_{t+1} = x_t + v_t$$

 $v_{t+1} = v_t + u_t$ for: $t = 1, 2, ..., 49$

- Decide thruster inputs u_1, u_2, \ldots, u_{49} .
- This time: minimize $||u||_p$

Example: hovercraft revisited

```
minimize \|u\|_p

subject to: x_{t+1} = x_t + v_t for t = 1, ..., 49

v_{t+1} = v_t + u_t for t = 1, ..., 49

x_1 = 0, \quad x_{50} = 100

v_1 = 0, \quad v_{50} = 0
```

- This model has 150 variables, but very easy to understand.
- We can simplify the model considerably...

Model simplification

$$x_{t+1} = x_t + v_t$$

 $v_{t+1} = v_t + u_t$ for: $t = 1, 2, ..., 49$

$$v_{50} = v_{49} + u_{49}$$

= $v_{48} + u_{48} + u_{49}$
= ...
= $v_1 + (u_1 + u_2 + \cdots + u_{49})$

Model simplification

$$x_{t+1} = x_t + v_t$$

 $v_{t+1} = v_t + u_t$ for: $t = 1, 2, ..., 49$

$$x_{50} = x_{49} + v_{49}$$

$$= x_{48} + 2v_{48} + u_{48}$$

$$= x_{47} + 3v_{47} + 2u_{47} + u_{48}$$

$$= \dots$$

$$= x_1 + 49v_1 + (48u_1 + 47u_2 + \dots + 2u_{47} + u_{48})$$

Model simplification

$$x_{t+1} = x_t + v_t$$

 $v_{t+1} = v_t + u_t$ for: $t = 1, 2, ..., 49$

Constraint can be rewritten as:

$$\begin{bmatrix} 48 & 47 & \dots & 2 & 1 & 0 \\ 1 & 1 & \dots & 1 & 1 & 1 \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \\ \vdots \\ u_{49} \end{bmatrix} = \begin{bmatrix} x_{50} - x_1 - 49v_1 \\ v_{50} - v_1 \end{bmatrix}$$

so we don't need the intermediate variables x_t and v_t !

Julia demo: Hover 1D.ipynb

Results

1. Minimizing $||u||_2^2$ (smooth)

2. Minimizing $||u||_1$ (sparse)

3. Minimizing $||u||_{\infty}$ (equalized)

Tradeoff studies

1. Minimizing $||u||_2^2 + \lambda ||u||_1$ (smooth and sparse)

2. Minimizing $||u||_{\infty} + \lambda ||u||_{1}$ (equalized and sparse)

3. Minimizing $||u||_2^2 + \lambda ||u||_{\infty}$ (equalized and smooth)

