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Review of tradeoffs

Recap of tradeoffs:

� We want to make both J1(x) and J2(x) small subject to
constraints.

� Choose a parameter λ > 0, solve

minimize
x

J1(x) + λJ2(x)

subject to: constraints

� Each λ > 0 yields a solution x̂λ.

� Can visualize tradeoff by plotting J2(x̂λ) vs J1(x̂λ). This is
called the Pareto curve.
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Multi-objective tradeoff

� Similar procedure if we have more than two costs we’d like
to make small, e.g. J1, J2, J3

� Choose parameters λ > 0 and µ > 0. Then solve:

minimize
x

J1(x) + λJ2(x) + µJ3(x)

subject to: constraints

� Each λ > 0 and µ > 0 yields a solution x̂λ,µ.

� Can visualize tradeoff by plotting J3(x̂λ,µ) vs J2(x̂λ,µ) vs
J1(x̂λ,µ) on a 3D plot. You then obtain a Pareto surface.
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Minimum-norm as a regularization
� When Ax = b is underdetermined (A is wide), we can

resolve ambiguity by adding a cost function, e.g.
min-norm LS:

minimize
x

‖x‖2

subject to: Ax = b

� Alternative approach: express it as a tradeoff!

minimize
x

‖Ax − b‖2 + λ‖x‖2

Tradeoffs of this type are called regularization and λ is
called the regularization parameter or regularization weight

� If we let λ→∞, we just obtain x̂ = 0

� If we let λ→ 0, we obtain the minimum-norm solution! 10-4



Proof of minimum-norm equivalence

minimize
x

‖Ax − b‖2 + λ‖x‖2

Equivalent to the least squares problem:

minimize
x

∥∥∥∥[ A√
λI

]
x −

[
b
0

]∥∥∥∥2
Solution is found via pseudoinverse (for tall matrix)

x̂ =

([
A√
λI

]T [
A√
λI

])−1 [
A√
λI

]T [
b
0

]
= (ATA + λI )−1ATb
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Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

x̂ = (ATA + λI )−1ATb

� Can’t simply set λ→ 0 because A is wide, and therefore
ATA will not be invertible.

� Use the fact that: ATAAT + λAT can be factored two ways:

(ATA + λI )AT = ATAAT + λAT = AT(AAT + λI )

(ATA + λI )AT = AT(AAT + λI )

AT(AAT + λI )−1 = (ATA + λI )−1AT
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Proof of minimum-norm equivalence

Solution of 2-norm regularization is:

x̂ = (ATA + λI )−1ATb

Also equal to:

x̂ = AT(AAT + λI )−1b

� Since AAT is invertible, we can take the limit λ→ 0 by just
setting λ = 0.

� In the limit: x̂ = AT(AAT)−1b. This is the exact solution to
the minimum-norm least squares problem we found before!
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Tradeoff visualization

minimize
x

‖Ax − b‖2 + λ‖x‖2

‖Ax − b‖2

‖x‖2

λ→ 0(
0, ‖A†b‖2

)

λ→∞(
‖b‖2, 0

)
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Regularization

Regularization: Additional penalty term added to the cost
function to encourage a solution with desirable properties.

Regularized least squares:

minimize
x

‖Ax − b‖2 + λR(x)

� R(x) is the regularizer (penalty function)

� λ is the regularization parameter

� The model has different names depending on R(x).
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Regularization

minimize
x

‖Ax − b‖2 + λR(x)

1. If R(x) = ‖x‖2 = x21 + x22 + · · ·+ x2n
It is called: L2 regularization, Tikhonov regularization, or
Ridge regression depending on the application. It has the
effect of smoothing the solution.

2. If R(x) = ‖x‖1 = |x1|+ |x2|+ · · ·+ |xn|
It is called: L1 regularization or LASSO. It has the effect of
sparsifying the solution (x̂ will have few nonzero entries).

3. R(x) = ‖x‖∞ = max{|x1|, |x2|, . . . , |xn|}
It is called L∞ regularization and it has the effect of
equalizing the solution (makes most components equal).
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Norm balls

For a norm ‖·‖p, the norm ball of radius r is the set:

Br = {x ∈ Rn | ‖x‖p ≤ r}
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Simple example

Consider the minimum-norm problem for different norms:

minimize
x

‖x‖p

subject to: Ax = b

� set of solutions to Ax = b
is an affine subspace

� solution is point belonging
to smallest norm ball

� for p = 2, this occurs at
the perpendicular distance
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Simple example

� for p = 1, this occurs at
one of the axes.

� sparsifying behavior
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Another simple example
Suppose we have data points {y1, . . . , ym} ⊂ R, and we would
like to find the best estimator for the data, according to
different norms. Suppose data is sorted: y1 ≤ · · · ≤ ym.

minimize
x

∥∥∥∥∥∥∥
y1...
ym

−
x...
x


∥∥∥∥∥∥∥
p

� p = 2: x̂ = 1
m

(y1 + · · ·+ ym). This is the mean of the data.

� p = 1: x̂ = y dm/2e. This is the median of the data.

� p =∞: x̂ = 1
2
(y1 + ym). This is the mid-range of the data.

Julia demo: Data Norm.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Data Norm.ipynb


Example: hovercraft revisited

One-dimensional version of the hovercraft problem:

� Start at x1 = 0 with v1 = 0 (at rest at position zero)

� Finish at x50 = 100 with v50 = 0 (at rest at position 100)

� Same simple dynamics as before:

xt+1 = xt + vt

vt+1 = vt + ut
for: t = 1, 2, . . . , 49

� Decide thruster inputs u1, u2, . . . , u49.

� This time: minimize ‖u‖p
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Example: hovercraft revisited

minimize
xt ,vt ,ut

‖u‖p

subject to: xt+1 = xt + vt for t = 1, . . . , 49

vt+1 = vt + ut for t = 1, . . . , 49

x1 = 0, x50 = 100

v1 = 0, v50 = 0

� This model has 150 variables, but very easy to understand.

� We can simplify the model considerably...
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Model simplification

xt+1 = xt + vt

vt+1 = vt + ut
for: t = 1, 2, . . . , 49

v50 = v49 + u49

= v48 + u48 + u49

= . . .

= v1 + (u1 + u2 + · · ·+ u49)
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Model simplification

xt+1 = xt + vt

vt+1 = vt + ut
for: t = 1, 2, . . . , 49

x50 = x49 + v49

= x48 + 2v48 + u48

= x47 + 3v47 + 2u47 + u48

= . . .

= x1 + 49v1 + (48u1 + 47u2 + · · ·+ 2u47 + u48)
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Model simplification

xt+1 = xt + vt

vt+1 = vt + ut
for: t = 1, 2, . . . , 49

Constraint can be rewritten as:

[
48 47 . . . 2 1 0
1 1 . . . 1 1 1

]
u1
u2
...
u49

 =

[
x50 − x1 − 49v1

v50 − v1

]

so we don’t need the intermediate variables xt and vt!

Julia demo: Hover 1D.ipynb
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http://nbviewer.jupyter.org/url/www.laurentlessard.com/teaching/cs524/examples/Hover 1D.ipynb


Results
1. Minimizing ‖u‖22 (smooth)
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2. Minimizing ‖u‖1 (sparse)
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3. Minimizing ‖u‖∞ (equalized)
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Tradeoff studies
1. Minimizing ‖u‖22 + λ‖u‖1 (smooth and sparse)
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2. Minimizing ‖u‖∞ + λ‖u‖1 (equalized and sparse)
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3. Minimizing ‖u‖22 + λ‖u‖∞ (equalized and smooth)
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